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1. Introduction  

Droughts are as much a part of weather and climate extremes as floods, hurricanes and tornadoes, but are 
the most costly extremes among all natural disasters in the U.S. [Ross and Lott, 2003]. The estimated annual 
direct losses to the U.S economy due to droughts are about $6–$8 billion, with the drought of 1988 estimated 
to have damages over $39 billion [Federal Emergency Management Agency, 1995]. Over other parts of the 
world, droughts are also among the most damaging of natural disasters in human, environmental and 
economic terms. The consequences of drought are perhaps nowhere more urgent than in Africa where IPCC 
projections of increase future drought frequency have perilous implications for the livelihood of residents 
who depend heavily upon ecosystem services. Unlike other natural disasters, droughts develop slowly over 
large areas and over an extended period of time, making it difficult to identify them until they have become 
severe and some damage has already occurred. Therefore, accurate quantitative assessment of drought 
conditions and the prediction of the on-set, duration and recovery of droughts in realtime are critical for 
drought planning and preparedness. 

Studies over the last two decades have demonstrated the feasibility of seasonal climate predictions with 
dynamical climate models. The skill of seasonal predictions is believed to come from the slow varying 
components of the climate system, mainly tropical Pacific sea surface temperature, although more recently 
surface soil moisture has also shown certain contributions over transition zones between dry and wet climatic 
regions (Koster et al. 2000 and 2004). At present, seasonal climate predictions are made routinely at several 
weather and climate prediction centers and research institutes, including the European Centre for Medium-
range Weather Forecasting (ECMWF), and in the U.S. the National Centers for Environmental Prediction 
(NCEP). The predictions have shown significant skill over the tropics, while in the mid-latitudes their skill is 
improving, with some models showing skill comparable to the skill from statistical models (Saha et al. 2006). 
There is the expectation that these seasonal dynamical climate forecasts can contribute to the development of 
seasonal hydrologic prediction capabilities.  

However, challenges must be overcome in utilizing seasonal climate forecasts from dynamical climate 
models in a seasonal hydrologic prediction system. One significant challenge is to correct the biases in 
climate model predictions, especially those related to precipitation and temperature. Another challenge is to 
resolve the disparity in spatial scales between the ones resolved in climate models and those needed for 
hydrologic applications. For instance, the current operational NCEP global coupled ocean-atmosphere model, 
called the Climate Forecast System (CFS) (Saha et al. 2006), runs at T62L64 resolution (~1.875 degree in 
longitude). The climate models in the European Union (EU) DEMETER project (Palmer et al. 2004) provide 
hindcasts at a resolution of 2.5°×2.5°. However the hydrologic predictions need atmospheric forcing at a 
much finer resolution. As an example, the North America Land Data Assimilation System (NLDAS) 
(Mitchell et al. 2004), which provides real-time hydrologic simulations across the continental U.S., has 
adopted a spatial scale of 1/8th degree. Such disparities require a seasonal hydrologic forecast system to 
spatially downscale the information provided by the climate models to the finer hydrologic scale where the 
information can be properly used. The third challenge is to create realistic daily atmospheric forcing for 
hydrologic modeling from the monthly information provided by the climate models. Climate model forecasts 
are generally only available as a monthly forecast while the hydrologic models are run at daily or sub-daily 
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time steps. To make skillful seasonal hydrologic 
predictions, a good strategy is needed to overcome these 
challenges. 

This report summarizes the current research activity 
by the Princeton Land Surface Hydrology Group on 
developing the capability to monitor and forecast 
drought in near realtime for the US and globally. Part of 
the system is currently in transition to EMC/NCEP for 
operational testing. In the next two sections, we briefly 
describe the methodology for the Drought Monitoring 
and Prediction System (DMAPS), and present examples 
of its implementation for the US and its pilot extension 
to Africa, followed by a brief summary.  

2.  Methodology 

Figure 1 provides a schematic diagram of our current 
approach for drought monitoring and prediction over the 
U.S. The central element of DMAPS is the Variable 
Infiltration Capacity (VIC) hydrological model [Liang et 
al., 1996; Cherkauer et al., 2003] that transforms meteorological information into hydrological information 
such as soil moisture and streamflow. VIC is one of several state-of-the-art macroscale hydrological models 
available, and it has been calibrated and evaluated in numerous studies at grid, basin and continental scales 
[Nijssen et al., 1997; Cherkauer and Lettenmaier, 1999; Maurer et al., 2002; Roads et al., 2003; Nijssen et al., 
2001; Sheffield and Wood, 2007].    

 

Fig. 2.  Comparison of the Princeton drought monitor with CPC Drought Monitor in the week of 
October 14, 2008. 

For drought monitoring, the approach is to use the VIC model with realtime atmospheric forcing 
provided by the North American Land Data Assimilation System (NLDAS) [Mitchell et al., 2004] to 
estimate the current total column soil moisture at each 1/8 degree grid across the continental U.S. A drought 
index value is computed for each grid, where the index is expressed as a percentile value of the current soil 
moisture with respect to its climatological probability distribution [Sheffield et al., 2004a]. The 
climatological distribution at each grid was obtained by running the VIC model with an observational 
atmospheric forcing dataset [Maurer et al., 2002; Cosgrove et al., 2003] for the period of 1949–2004, then 
sampling daily soil moisture values from days that are within a 49-day sampling window centered on the 
current day of each year. This gives a reasonable representation of the modeled soil moisture climatology 
with over 2500 samples. Both the realtime NLDAS forcing and the historical forcing are observation based 

Fig. 1.  Schematic diagram of the drought 
monitoring and prediction system (DMAPS) 
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and their quality has been validated in several studies [Luo et al., 2003; Maurer et al., 2002]. The soil 
moisture values obtained from these simulations have been shown to accurately represent soil moisture 
dynamics [Robock et al., 2003; Maurer et al., 2002]. Because the soil moisture percentile-based drought 
index provides a quantitative measure as a spatially continuous field, it can be used in drought forecasting. 
As illustrated in Figure 2, the drought assessment from our index and those of the Climate Prediction 
Center’s (CPC) Drought Monitor [Svoboda et al., 2002] are comparable (see 
http://hydrology.princeton.edu/forecast/). The major differences between the two are that CPC’s drought 
monitor is somewhat subjective, since human analysts blend five key indicators and numerous 
supplementary indicators together to form a drought intensity map, and that CPC’s drought monitor includes 
hydrologic drought which is defined as a low snowpack, streamflow or reservoir levels.   

The drought prediction component of 
DMAPS utilizes the seasonal hydrologic 
prediction system described in detail by Luo 
and Wood [2008]. As the drought 
monitoring component provides the best 
estimate of hydrologic initial conditions for 
the forecast through observation-based 
spinup, the prediction component needs to 
properly address the uncertainties associated 
with the atmospheric forcing, which is the 
major contributor to the total uncertainty in 
seasonal hydrologic forecast. Thus the 
accuracy of the atmospheric forcings is 
essential to the skill of the hydrologic 
predictions. Due to the nature of the forecast 
problem, atmospheric forcings cannot be 
accurately predicted; instead, their 
uncertainties need to be accurately 
quantified via an ensemble approach. Our 
goal is to create an ensemble of atmospheric 
forcings that reflects our best estimate of 
future conditions and their uncertainties. As 
illustrated in Figure 1, to achieve this, the 
system implements a Bayesian merging 
procedure [Luo et al., 2007] to combine 
seasonal forecasts from dynamical climate 
models with observed climatology at the 
monthly level to obtain posterior distributions for monthly precipitation and temperature at each grid for each 
month of the forecast period. Figure 3 illustrates the use of the Bayesian merging technique to combine a 
SST forecast from one DEMETER climate model with observed climatology to achieve a better estimate of 
the posterior distribution. This process effectively removes biases in the climate model seasonal forecasts and 
statistically downscales the forecasts from climate model scales to the smaller scale that is more appropriate 
for hydrologic applications. When making seasonal hydrologic predictions at the beginning of each month, 
the system takes all the members from NCEP’s CFS [Saha et al., 2006] seasonal forecast issued during the 
previous month and passes them through the Bayesian merging procedure to obtain the posterior 
distributions that are sampled to generate 20 atmospheric forcing ensembles for the hydrologic prediction. 
The 20 atmospheric forcing time series are based on 20 historical daily forcing time series from the dataset 
provided by Maurer et al. [2002] and adjusted at the daily level to match the monthly forecast values sampled 
from the posterior distribution. Half of the members are selected randomly from all available historical 
records and the other half are selected with a historical-analogue criterion. For the latter, all historical 
precipitation patterns are compared with the current predicted precipitation pattern (mean of the posterior 

Fig. 3.  Prior distribution (dashed black) and posterior 
distribution (solid black) for the forecast of monthly mean 
SST over selected grid (2.5 x 2.5 centered at 0 and 130W) of 
December 1998. The raw forecast (solid gray) distribution 
estimated from one EU DEMETER climate model is also 
plotted.  The vertical dotted line indicates the actual 
observation for December 1998. The prior distribution is 
estimated from data spanning 1982 to 1999 except 1998.  The 
histogram of the 19 months is also shown. 
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distribution) and are sorted by their similarities to the current predicted pattern. The similarity is simply 
measured by the root mean square difference (RMSD) of the two, calculated for all grids in the region and all 
six–month periods. The likelihood of realization for each ensemble member is considered to be larger if its 
RMSD value is smaller. Therefore the 10 historical years with the smallest RMSD values are selected. 
Although simple and empirical, this selection criterion considers the similarity in spatial and temporal 
patterns in monthly precipitation anomalies. The small ensemble set formed by the seven members with 
largest likelihood of realization is noted as the ‘‘most-likely ensemble set’’. As shown in the next section, 
using the CFS seasonal climate forecasts, the hydrological prediction with the most-likely ensemble set has 
shown promising skill in predicting recent droughts over the West and Southeast of the U.S. 

3.  Drought monitoring and forecasting 
over the US 

The drought forecast system was tested 
initially with retrospective forecasts of 
selected historical drought events in the US. 
The successful prediction of the onset, 
development, and recovery of droughts is 
very valuable for drought impact preparation 
and mitigation. The summer of 1988 was 
very dry over the central northern part of 
United States. The severe drought conditions 
lasted more than five months, causing 
significant damages to agriculture and the 
local economy [American Meteorological 
Society 1997]. Here, we use the summer of 
1988 forecasts for the Ohio River basin as 
an example to illustrate the skill of our 
prediction system (Figure 4). Results are 
shown for three different approaches (ESP, 
CFS, and CFS+DEMETER). The Ensemble 
Streamflow Prediction (ESP) forecast is a 
proxy of the forecast approach used 
operationally at river forecast centers 
(RFCs). The CFS-based forecast utilizes the 
information from seasonal climate forecast 
from the NCEP CFS in the Bayesian 
merging procedure, and the 
CFS+DEMETER forecast is the same as the 
CFS-based forecast except that it also uses 
forecast information from 7 DEMETER 
models, thus forming a multi-model 
Bayesian merging. As shown in Figure 4, at 
the beginning of May 1988 much of the 
region was already in drought, so all three 
approaches predicted dry soil moisture 
anomalies, as indicated by the low percentile 
values of the ensemble mean. However, the 
development of the drought is predicted 
differently by the three different approaches, 
mainly as a result of the difference in precipitation forecasts. The drought as predicted by CFS+DEMETER 
persists much longer (to the end of the forecast period), whereas the drought almost recovers in June 
according to the ESP forecast.    

Fig. 4.  Comparison of soil moisture forecasts (ensemble mean 
of monthly average soil moisture expressed as the percentile 
value within the climatological distribution) from (right three 
columns) three forecast approaches and observations. (left 
column)  The retrospective offline simulation of VIC, driven 
by the Maurer et al. (2002) dataset that serves as a proxy for 
observations.
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During early 2007, severe 
droughts developed over the west 
and southeast of the U.S. These 
events were captured by our 
monitoring system and well 
predicted by our prediction made 
from the initial conditions on 
January 1, 2007. Figure 5 compares 
the predicted soil moisture 
conditions from the most-likely 
ensemble set of the 200701 forecast 
with the ‘‘observed’’ soil moisture 
condition from our realtime drought 
monitoring. The prediction 
indicates a severe drought 
developing over California and the 
ensemble spread (expressed as the 
difference in percentile values of 
the lower and upper quartile of the 
ensemble distribution) is small 
suggesting a highly confident 
prediction over the region (see the 
contours of the inter-quartile range 
in the left hand portion of Figure 5). 
Over the Southeast, it is predicted 
that a relatively weaker drought 
condition develops in February and 
expands to the entire Southeast in 
March. However, the ensemble 
spread is large (>30), suggesting 
that less confidence should be given 
to the prediction. Compared with 
the soil moisture conditions from 
the drought monitoring, the 
prediction over the West gives a 
very good correspondence in terms 
of the area and severity of the 
drought with accuracy values (hit 
rate) of 0.93, 0.92 and 0.88 for 
predicting soil moisture below the 20th percentile over the region during the first three months, respectively. 
Over the Southeast, the prediction is satisfactory but slightly less skillful with accuracy values of 0.94, 0.54 
and 0.44. It under-predicted the severity of the drought locally over Mississippi, Alabama and Tennessee, 
and over-predicted the severity for the East Coast. Since the ensemble spread is quite large over these regions, 
such forecast errors are not surprising. 

To further evaluate the skill of the predictions, Figure 6 shows the evolution of the droughts and their 
predictions over the West and the Southeast defined by the boxes in Figure 5. Within each region, the 
number of 1/8 degree grid cells where the monthly mean soil moisture value is below the 20th percentile 
threshold is counted for each month. The black solid lines in Figure 6 are from the realtime drought 
monitoring and represent the actual development of the droughts. For the predictions, grid cells that satisfy 
the same criteria are counted in each of the seven ensemble members and the counts are averaged to give the 
mean forecasts (solid green, blue and red lines). The spread of each ensemble forecast is indicated by the thin 

Fig. 5.  Predicted soil moisture index for the first three months of the 
200701 forecast that uses the initial condition on January 1, 2007, 
compared with the estimated soil moisture index from the realtime 
drought monitoring.  Left column shows the mean of the most-likely 
ensemble set (shaded) and their spread (contour). See section 2 for the 
definition and basis of the index. 
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lines as one standard deviation from their mean. Evidently, the predictions are very skillful in capturing the 
evolution of the droughts over both regions, especially during the first two months of each forecast. Since 
predictability decreases with lead time, as illustrated by Luo and Wood [2006], we expect that forecast skill 
will also decrease with lead time, which is supported by the increase in ensemble spread and with the mean 
forecasts approaching climatology. Therefore, when interpreting the prediction, we tend to trust the 
predictions more at the shorter lead times. 

Fig. 6.  Drought predictions with DMAPS over the West and the Southeast. Shown is the area (number 
of grid cells) where soil moisture index is below 20 (i.e., the 20th percentile of the climatological soil 
moisture distribution from the offline simulation). See text for a further discussion. 

4. Towards a global drought monitoring and forecasting capability  

These U.S. focused monitoring and prediction activities have provided the foundation for expansion to a 
global system. A first step towards this has been the development of an experimental system for Africa, the 
African Drought Monitor (ADM), developed jointly by Princeton University and the University of 
Washington, with support from UNESCO’s International Hydrological Programme (IHP). This is now 
accessible at http://hydrology.princeton.edu/monitor. The ADM has the objective of providing near-real time 
(2-3 days latency) drought monitoring products based on VIC hydrologic output, and making these available 
for evaluation. Similar to the U.S. system (DMAPS), the ADM: i) provides near-real time fields of soil 
moisture and other hydrologic variables over Africa using observation-forced VIC simulations; ii) provides 
drought products that quantify the current state of drought in the context of the regional climatology; and iii) 
monitors where drought evolution and dissipation based on soil moisture thresholds. 

The background climatology for drought assessment is based on long-term (1950-2000) global VIC land 
surface model simulations of terrestrial hydrology forced by the meteorological forcing dataset of Sheffield 
et al. [2006]. The bias corrected and downscaled forcings are applied at 1.0 degree latitude-longitude spatial 
resolution. The forcing data were constructed by combining a suite of global observation-based data sets with 
the NCEP/NCAR reanalysis [Kalnay et al, 1996]. Known biases in the reanalysis precipitation and near-
surface meteorology are known to exert an erroneous effect on modeled land surface water and energy 
budgets [Maurer et al, 2001] and were corrected using observation-based precipitation, air temperature and 
downward solar radiation data. Corrections were also made to the rain day statistics of the reanalysis 
precipitation [Sheffield et al., 2004b], which have been found to exhibit a spurious wave-like pattern in high-
latitude wintertime. Corrected reanalysis precipitation was disaggregated in space to 1.0 degree spatial 
resolution by statistical downscaling using relationships developed with the Global Precipitation Climatology 
Project (GPCP) daily product. Disaggregation in time from daily to 3-hourly was accomplished similarly, 
using the Tropical Rainfall Measuring Mission (TRMM) 3-hourly 3B42 data set. Other meteorological 
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variables (downward short- and 
longwave, specific humidity, surface air 
pressure and wind speed) were 
downscaled in space with account for 
changes in elevation whilst maintaining 
inter-variable consistency. The 
hydrologic output and specifically the 
soil moisture from these retrospective 
simulations have been analyzed in terms 
of the occurrence and characteristics of 
drought [Sheffield and Wood, 2007] and 
their long-term trends and variability 
[Sheffield and Wood, 2008].  Figure 7 
shows historic time series of the ADM 
Drought Index and area in drought for 
regions of Africa. Also shown are maps 
of monthly drought severity during these 
drought events. 

For real-time monitoring, the 
availability of data provides real 
challenges, especially in data-sparse 
regions such as Africa. We therefore 
have to rely on data streams from 
various providers and locations, and 
thus use observations from several 
sources. At present, precipitation is 
taken from the Precipitation Estimation 
from Remotely Sensed Information 
using Artificial Neural Networks 
(PERSIANN) system. Surface air 
temperature and wind speed are gridded 
from Global Telecommunication System 
stations. Downward radiative fluxes and 
humidity are indexed to surface air 
temperature and its diurnal range. 
Backup meteorological data are taken 
from the NCEP Global Forecast System 
analysis fields when primary data are unavailable or fail quality control checks. Figure 8 shows current 
drought and hydrologic conditions at the time of writing from the ADM webpage. Inconsistencies between 
the 50-year model climatology and the near real-time data pose a major challenge. For instance, the 
PERSIANN satellite-based precipitation is generally higher than climatology which tends to bias the drought 
products. We are currently adding additional satellite-based real time precipitation streams (namely, the 
NCEP/CPC CMORPH product and NASA’s TRMM TMPA-RT) that will give an indication of the 
uncertainty in the real time products. We are also working to extend our climatology period (currently to 
2000) to provide a longer overlap period, and allow us to implement bias adjustment procedures.  

5.  Summary 

As shown in this study (including the results on our drought monitoring web site: 
http://hydrology.princeton.edu/forecast/ and http://hydrology.princeton.edu/monitor), as well as by Sheffield 
et al. [2004a] and Andreadis and Lettenmaier [2006], model-based drought monitoring systems provide a 
reasonably accurate and quantitative measure of land surface hydrological conditions, when forced with high 

Fig. 7.  Time series of ADM drought index and area in drought for 
three regions of Africa (right); left visuals show spatial distribution 
of drought severity (as percentiles of total column soil moisture 
relative to 1950-2000 climatology) for major 20th century drought 
events.
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quality meteorological data. This study also 
demonstrates the feasibility of doing drought 
prediction using seasonal forecasts from dynamic 
climate models. Although forecasts from dynamic 
climate models have limited skill over the mid-
latitudes in precipitation and temperature 
predictions, the drought prediction for the recent 
U.S. drought and hindcasts over the Ohio River 
basin [Luo and Wood, 2008] indicate the 
possibility of boosting forecast skill by statistically 
bias correcting and downscaling climate model 
forecasts via the Bayesian merging procedure. For 
the 2007 US drought, DMAPS was able to predict 
the onset of the severe drought over the West with 
great confidence (small ensemble spread) several 
months in advance, and the spatial pattern and 
severity of the predicted drought correspond well to 
the subsequent realtime drought monitoring of 
actual (modeled) conditions. In the Southeast, the 
system also predicted dry conditions, but the 
location, area and severity of the drought are not as 
accurate and the confidence is lower, as indicated 
by the spread of the ensemble distribution. This 
suggests that the ensemble spread is also 
informative when interpreting ensemble predictions. 

Our current drought forecast system uses the 
ensemble seasonal forecast from CFS within the Bayesian merging procedure, but the system can potentially 
use forecasts from multiple models. As illustrated in this study and studies by Luo et al. [2007] and Luo and 
Wood [2008], a multi-model Bayesian merging produces more reliable and skillful forecasts as compared to 
forecasts from one single dynamic model. Our expected implementation of this procedure with seasonal 
forecasts from multiple seasonal climate models will further improve the accuracy of the drought recovery 
estimates and should help the development of the National Integrated Drought Information System (NIDIS). 
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